Hai Quipperian, saat di SD kamu sudah pernah belajar tentang tanda lebih kecil dari ββ, kan? Misalnya, 3 2. Nah, di SMP kamu akan bertemu kembali tanda lebih kecil atau lebih besar dari tersebut dalam bentuk pertidaksamaan, lho. Lebih tepatnya, pertidaksamaan linear satu variabel. Lalu, apa yang dimaksud pertidaksamaan linear satu variabel itu? Yuk, simak selengkapnya! Pengertian Pertidaksamaan Linear Satu Variabel Pertidaksamaan linear satu variabel adalah pertidaksamaan yang hanya memuat satu variabel saya, misalnya variabel x. Jika suatu persamaan ditandai dengan sama dengan β=β, maka pertidaksamaan ditandai dengan ββ, ββ€β, ββ₯β. Pernyataan berikut ini merupakan contoh penerapan pertidaksamaan linear satu variabel. βSiswa dikatakan lulus jika mendapatkan nilai sekurang-kurangnya 70β. Jika ditulis secara matematis, menjadi x β₯ 70. Artinya, nilai minimal yang harus dicapai siswa untuk lulus adalah 70. Bentuk Umum Pertidaksamaan Linear Satu Variabel Pertidaksamaan linear satu variabel memiliki bentuk umum seperti berikut. ax + b β, ββ€β atau ββ₯β Keterangan a = koefisien x; x = variabel; dan b, c = konstanta. Sifat-Sifat Pertidaksamaan Linear Satu Variabel Adapun sifat-sifat pertidaksamaan linear satu variabel adalah sebagai berikut. Tanda Pertidaksamaan Tidak Berubah dengan Operasi Penjumlahan dan Pengurangan Untuk menyelesaikan pertidaksamaan linear satu variabel, terkadang kamu harus melakukan operasi penjumlahan atau pengurangan pada kedua ruas dengan suku yang sama. Operasi semacam ini tidak akan mengubah tanda pertidaksamaan, ya. Perhatikan contoh berikut. 2x + 3 > 4 kedua ruas dikurangi 3 2x + 3 β 3 > 4 β 3 2x > 1 x > Β½ Lalu, mengapa harus dilakukan pengurangan atau penjumlahan kedua ruas dengan bilangan yang sama? Langkah itu bertujuan untuk membentuk pertidaksamaan yang ekuivalen dan sederhana. Tanda Pertidaksamaan Tidak Berubah dengan Operasi Perkalian Bilangan Positif Jika suatu pertidaksamaan linear satu variabel dikalikan dengan bilangan positif yang sama di kedua ruasnya, maka tanda pertidaksamaannya juga tidak akan berubah. Perhatikan contoh berikut. 15x β, β>β menjadi β<β, ββ€β menjadi ββ₯β, ββ₯β menjadi ββ€β. Perhatikan contoh berikut. -2x + 3β€ 5 kedua ruas dikurangi 3 -2x + 3 β 3 β€ 5 β 3 -2x β€ 2 kedua ruas dikali -12 -2x Γ -12β€ 2 Γ -12 x β₯ -1 tanda berubah dari ββ€β menjadi ββ₯β Contoh Pertidaksamaan Linear Satu Variabel Jika mengacu pada pembahasan di atas, pertidaksamaan linear satu variabel memiliki bentuk yang mudah untuk disederhanakan. Perhatikan contoh berikut. Tentukan himpunan x yang memenuhi pertidaksamaan tersebut! Pembahasan Mula-mula, selesaikan dahulu perkalian aljabar di ruas kiri seperti berikut. Lalu, pindah x dari ruas kanan ke ruas kiri dan 3 dari ruas kiri ke ruas kanan. Di soal tertulis bahwa x termasuk anggota himpunan bilangan asli. Dengan demikian, nilai x yang memenuhi adalah himpunan bilangan asli itu sendiri yang dimulai dari 1, 2, 3, dan seterusnya. Jadi, himpunan x yang memenuhi pertidaksamaan tersebut adalah himpunan bilangan asli. Contoh Soal Untuk mengasah pemahamanmu tentang pertidaksamaan linear satu variabel, yuk simak beberapa contoh soal berikut. Contoh Soal 1 Heru memiliki 100 butir kelereng dan Roni memiliki 150 butir kelereng. Oleh karena suatu hal, keduanya memberikan kelereng-kelereng tersebut pada Kiki dengan jumlah yang sama. Jika sisa kelereng yang dimiliki Roni sekurang-kurangnya dua kali sisa kelereng Heru, berapakah total kelereng maksimal yang diterima Kiki? Pembahasan Mula-mula, kamu harus mengubah soal tersebut dalam bentuk pertidaksamaan linear satu variabel. Misal, jumlah kelereng yang diberikan pada Kiki = x, sehingga Jumlah kelereng Roni β x β€ 2 Jumlah kelereng Heru β x 150 β x β€ 2 100 β x 150 β x β€ 200 β 2x βx + 2x β€ 200 β 150 x β€ 50 Artinya, jumlah kelereng maksimal yang diberikan Heru dan Roni pada Kiki adalah 50. Jadi, total kelereng maksimal yang diterima Kiki adalah 50 + 50 = 100. Contoh Soal 2 Ibu memiliki 30 buah mangga. Mangga-mangga tersebut akan dibagikan pada rekan arisannya. Jika 5 rekan arisan ibu mendapatkan masing-masing 2 mangga dan rekan lainnya mendapatkan 4 mangga, maka masih ada mangga yang tersisa. Namun, jika hanya ada 2 rekan arisan yang mendapatkan masing-masing 2 mangga dan rekan arisan lain mendapatkan 4 mangga, maka mangganya tidak cukup. Tentukan banyaknya rekan arisan ibu! Pembahasan Dari soal ada dua kondisi, ya. Kondisi pertama Ibu membagikan masing-masing 2 mangga pada 5 rekan arisannya. Lalu, rekan arisan lainnya diberi 4 mangga. Ternyata, mangganya masih tersisa. Jika dinyatakan secara matematis, menjadi Misal banyak rekan arisan ibu = x, maka Kondisi kedua Ibu membagikan masing-masing 2 mangga pada 2 rekan arisannya. Lalu, rekan arisan lainnya diberi 4 mangga. Ternyata, mangganya masih kurang atau tidak cukup. Jika dinyatakan secara matematis, menjadi Misal banyak rekan arisan ibu = x, maka Selanjutnya, selesaikan pertidaksamaan 1 dan 2. Tentukan nilai x yang memenuhi kedua pertidaksamaan. Solusi x pada persamaan 1 Solusi x pada persamaan 2 Dari solusi kedua pertidaksamaan diperoleh nilai x yang memenuhi berada di intervak 8 < x < 10, yaitu 9. Jadi, jumlah rekan arisan ibu adalah 9. Contoh Soal 3 Tentukan nilai x yang memenuhi pertidaksamaan berikut. Pembahasan Mula-mula, kurangkan kedua ruas dengan 5. Lalu, pindahkan 14x ke ruas kiri. Selanjutnya, kalikan kedua ruas dengan 4. Jadi, nilai x yang memenuhi adalah x β₯ -24. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!
EditorRigel Raimarda. Pertidaksamaan nilai mutlak linear satu variabel merupakan suatu pertidaksamaan nilai mutlak yang hanya menggunakan satu variabel (biasanya variabel x). Penyelesaian pertidaksamaan nilai mutlak linear satu variabel memiliki sifat yang berbeda-beda, salah satunya tergantung dari tanda pertidaksamaannya.Persamaan linear satu variabel adalah kalimat terbuka yang dihubungkan dengan tanda sama dengan = dan hanya memiliki satu variabel berpangkat satu. Pertidaksamaan linear satu variabel adalah kalimat terbuka yang dinyatakan dengan menggunakan tanda/lambang ketidaksamaan/ pertidaksamaan dengan satu variable peubah berpangkat satu. Berikut ini 10 soal dan jawaban ulangan harian tentang persamaan dan pertidaksamaan linear satu variabel. Soal 1 Perhatikan kalimat-kalimat berikut. 1 12 β 2 x 5 = 2 2 3 x 7 = 4 x 2 + 13 3 5 x 6 β 3 x 7 = 4 x 3 4 15 β 3 x 4 72 Sisi pertama + sisi kedua + sisi ketiga > 72 3a + 4a + 5a > 72 12a > 72 a > 6 Karena a>6 maka Sisi pertama = 3a = 3 x 6 = 18 Sisi kedua = 4a = 4 x 6 = 24 Sisi ketiga = 5a = 5 x 6 = 30 Soal 10 Sebuah truk tanpa beban beratnya 3720 kg. Truk tersebut akan mengangkut kotak-kotak yang berisi peralatan mesin. Berat setiap kotak 250 kg. Truk tersebut berpenumpang 2 orang yang jumlah berat badannya 150 kg. Jika jumlah berat beban truk tidak boleh lebih dari 7500 kg, maksimum kotak yang dapat diangkut β¦ a. 13 buah b. 14 buah c. 15 buah d. 16 buah Jawaban b Penyelesaian Berat truk tanpa beban = 3720 Berat 1 kotak peralatan mesin = 250 Berat beberapa kotak peralatan mesin = 250 x Berat badan 2 orang penumpang = 150 Jumlah berat badan truk β€ 7500 3720 + 250x + 150 β€ 7500 3870 + 250x β€ 7500 250x β€ 7500-3870 250x β€ 3630 x β€ 14,52 x β€ 14
ModulSistem Persamaan Linear Tiga Variabel Kelas 10 pdf Matematika Umum SMA KD 3.3 disusun oleh Yenni Dian Anggraini, S.Pd.,M.Pd.,MBA dari SMA Negeri 9 Kendari. Harap Perhatikan Ibu/Bapak Guru! Ada dua (2) opsi di akhir postingan yaitu DOWNLOAD PDF untuk mengoleksi modul Sistem Persamaan Linear Tiga Variabel kelas 10 ini serta opsi MODUL MATEMATIKA LAINNYA untuk mengakses koleksi lainnya.- Pertidaksamaan nilai mutlak linear satu variabel merupakan suatu pertidaksamaan nilai mutlak yang hanya menggunakan satu variabel biasanya variabel x. Penyelesaian pertidaksamaan nilai mutlak linear satu variabel memiliki sifat yang berbeda-beda, salah satunya tergantung dari tanda pertidaksamaan nilai mutlak linear satu variabel Berikut ini terdapat tiga soal yang secara umum menggambarkan persoalan pertidaksamaan nilai mutlak linear satu variabel. Contoh soal 1 Tentukan penyelesaian dari pertidaksamaan 4x+3<9! Jawaban4x+3<9-9<4x+3<9-9-3<4x+3-3<9-3-12<4x<6-12/4<4x/4<6/4-3soal persamaan linear satu variabel kelas 10